sp; echo "<br>";
include ("jpgraph/jpgraph.php"); include ("jpgraph/jpgraph_scatter.php"); include ("jpgraph/jpgraph_line.php"); // The code for displaying the graphics is inline in the // explore.php script. The code for these two line plots // finishes off the script: // Omitted code for displaying scatter plus line plot // Omitted code for displaying residuals plot }
?> 火灾损失研究
为了演示如何使用数据研究工具,我将使用来自假想的火灾损失研究的数据。这个研究将主要住宅区火灾损失的金额与它们到最近消防站的距离关联起来。例如,出于确定保险费的目的,保险公司会对这种关系的研究感兴趣。
该研究的数据如 图 1中的输入屏幕所示。
图 1. 显示研究数据的输入屏幕
数据被提交之后,会对它进行分析,并显示这些分析的结果。第一个显示的结果集是 Table Summary,如 图 2所示。
图 2. Table Summary 是所显示的第一个结果集
Table Summary 以表格形式显示了输入数据和其它列,这些列指出了对应于观测值 X的预测值 Y、 Y值的预测值和观测值之间的差以及预测 Y值置信区间的下限和上限。
图 3显示了 Table Summary 之后的三个高级别数据汇总表。
图 3. 显示了 Table Summary 之后的三个高级别数据汇总表
Analysis of Variance表显示了如何将 Y值的偏离值归为两个主要的偏离值来源,由模型解释的方差(请看 Model 行)和模型不能解释的方差(请看 Error 行)。较大的 F值意味着该线性模型捕获了 Y测量值中的大多数偏离值。这个表在多次回归环境中更有用,在那里每个独立变量都在表中占有一行。
Parameter Estimates表显示了估算的 Y 轴截距(Intercept)和斜率(Slope)。每行都包括一个 T值以及观测到极限 T值的概率(请看 Prob > T 列)。斜率的 Prob > T可用于否决线性模型。
如果 T值的概率大于 0.05(或者是类似的小概率),那么您可以否决该无效假设,因为随机观测到极限值的可能性很小。否则您就必须使用该无效假设。
在火灾损失研究中,随机获得大小为 12.57 的 T值的概率小于 0.00000。这意味着对于与该研究中观测到的 X值区间相对应的 Y值而言,线性模型是有用的预测器(比 Y值的平均值更好)。
最终报告显示了相关性系数或 R 值。可以用它们来评估线性模型与数据的吻合程度。高的 R 值表明吻合良好。
每个汇总报告对有关线性模型和数据之间关系的各种分析问题提供了答案。请查阅 Hamilton、Neter 或 Pedhauzeur 编写的教科书,以了解更高级的回归分析处理。
要显示的最终报告元素是数据的分布图和线图,如 图 4所示。
图 4. 最终报告元素 — 分布图和线图
大多数人都熟悉线图(如本系列中的第一幅图)的说明,因此我将不对此进行注释,只想说 JPGraph 库可以产生用于 Web 的高质量科学图表。当您输入分布或直线数据时,它也做得很好。
第二幅图将残差(观测的 Y、预测的 Y)与您预测的 Y值关联起来。这是 研究性数据分析(Exploratory Data Analysis,EDA)的倡导者所使用的图形示例,用以帮助将分析人员对数据中的模式的检 |