MySQL查询优化技术系列讲座之使用索引
的时候不但需要写入数据行,还需要改变所有的索引。数据表带有的索引越多,需要做出的修改就越多,平均性能的降低程度也就越大。在本文的"高效率载入数据"部分中,我们将更细致地了解这些现象并找出处理方法。
其次,索引会花费磁盘空间,多个索引相应地花费更多的磁盘空间。这可能导致更快地到达数据表的大小限制: · 对于MyISAM表,频繁地索引可能引起索引文件比数据文件更快地达到最大限制。 · 对于BDB表,它把数据和索引值一起存储在同一个文件中,添加索引引起这种表更快地达到最大文件限制。 · 在InnoDB的共享表空间中分配的所有表都竞争使用相同的公共空间池,因此添加索引会更快地耗尽表空间中的存储。但是,与MyISAM和BDB表使用的文件不同,InnoDB共享表空间并不受操作系统的文件大小限制,因为我们可以把它配置成使用多个文件。只要有额外的磁盘空间,你就可以通过添加新组件来扩展表空间。 使用单独表空间的InnoDB表与BDB表受到的约束是一样的,因为它的数据和索引值都存储在单个文件中。 这些要素的实际含义是:如果你不需要使用特殊的索引帮助查询执行得更快,就不要建立索引。 选择索引 假设你已经知道了建立索引的语法,但是语法不会告诉你数据表应该如何索引。这要求我们考虑数据表的使用方式。这一部分指导你如何识别出用于索引的备选数据列,以及如何最好地建立索引: 用于搜索、排序和分组的索引数据列并不仅仅是用于输出显示的。换句话说,用于索引的最好的备选数据列是那些出现在WHERE子句、join子句、ORDER BY或GROUP BY子句中的列。仅仅出现在SELECT关键字后面的输出数据列列表中的数据列不是很好的备选列: SELECT 当然,显示的数据列与WHERE子句中使用的数据列也可能相同。我们的观点是输出列表中的数据列本质上不是用于索引的很好的备选列。 Join子句或WHERE子句中类似col1 = col2形式的表达式中的数据列都是特别好的索引备选列。前面显示的查询中的col_b和col_c就是这样的例子。如果MySQL能够利用联结列来优化查询,它一定会通过减少整表扫描来大幅度减少潜在的表-行组合。 考虑数据列的基数(cardinality)。基数是数据列所包含的不同值的数量。例如,某个数据列包含值1、3、7、4、7、3,那么它的基数就是4。索引的基数相对于数据表行数较高 |
凌众科技专业提供服务器租用、服务器托管、企业邮局、虚拟主机等服务,公司网站:http://www.lingzhong.cn 为了给广大客户了解更多的技术信息,本技术文章收集来源于网络,凌众科技尊重文章作者的版权,如果有涉及你的版权有必要删除你的文章,请和我们联系。以上信息与文章正文是不可分割的一部分,如果您要转载本文章,请保留以上信息,谢谢! |